Hadley Baseline Thermometers Vs Now – GHCN v3.3

In prior postings I did a comparison of GHCN thermometers “now” (last year in GHCN v3.3 or 2015) vs the thermometers in the GIStemp baseline (1950-1980).

I used “inclusive” of the end years but need to verify that they used 1980 as it is supposed to be 30 years, which would be 1950-1979 inclusive.

As I’ve gotten it all running again on the Raspberry Pi M3, I figured I’d get back to using things via doing a Hadley graph for their baseline of (1960-1990). That’s what they state it is on the web site, though they fail to mention “inclusive” or “exclusive” of the end points. In any case, I “ran with it” and made a very similar Sin Perspective Global map of Hadley Baseline vs “Now”:

Hadley Baseline (1960-1990) vs most current year GHCN v3.3

Hadley Baseline (1960-1990) vs most current year GHCN v3.3

This is interestingly different from the GISS version. Europe and Turkey, especially, change a lot:

GHCN v3.3 NOW in red over Baseline in Blue

GHCN v3.3 NOW in red 50% transparent over Baseline in Blue

The two graphs use slightly different dot sizes from the looks of it. Which is odd since I didn’t change that in this copy of the code – leaving me to think the exact size of s=1 changed between Python2 and Python3. I think that ought not to matter too much, but if someone wants it, I can make a new GIStemp version with identical dot size via converting that code to Python3. I suspect that is the reason the USA SouthWest looks different. The smaller 1/2 translucent red dots letting more of the blue baseline dots show through.


I made a version of the Hadley graph using s=0.5 so the dots ought to be closer to the GIStemp one. Here it is. See what you think:

Hadley Baseline vs Now smaller dot size

Hadley Baseline vs Now smaller dot size

Here’s the Python3 code I used to make the graph via a MariaDB new install on a Raspberry Pi Model 3 B running the Devuan 2.0 generic install of Linux:

chiefio@PiM3Devuan2:~/Py$ cat HadleyBaseVsNow.py 
# -*- coding: utf-8 -*-
import datetime
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import math
import mysql.connector as MySQLdb 

plt.title("Global Thermometer GHCN v3.3 NOW over BASELINE Hadley")

    sql="SELECT I.latitude, I.coslong FROM invent3 AS I INNER JOIN temps3 as T on I.stationID=T.stationID WHERE year<1991 AND year<1959 AND I.stationID NOT IN (SELECT I.stationID FROM invent3 AS I INNER JOIN temps3 as T ON I.stationID=T.stationID WHERE  year=2015)GROUP BY I.stationID;"
    data = np.array(list(stn))
    xs = data.transpose()[0]   # or xs = data.T[0] or  xs = data[:,0]
    ys = data.transpose()[1]


    sql="SELECT I.latitude, I.coslong FROM invent3 AS I INNER JOIN temps3 as T on I.stationID=T.stationID WHERE year=2015 GROUP BY I.stationID;"
    data = np.array(list(stn))
    xs = data.transpose()[0]   # or xs = data.T[0] or  xs = data[:,0]
    ys = data.transpose()[1]



    print ("This is the exception branch")

    print ("All Done")
    if db:

I’ve bolded the places where I changed the prior version of the code to make this graph.

The only change that matters is the change of selection range for the baseline set.

The rest are for Python3 vs Python2 and the newer MariaDB. The two “print” statements at the bottom had () added as Python3 wants them and Python2 didn’t. The login credentials changed as I’m using this database as ‘me’ rather than ‘root’ due to ‘root’ having a unix_socket connector set. Then the MariaDB connection method in Python3 is different with an assignment “=” and variable name instead of positional parameters (and “localhost’ is assumed).

In Conclusion

So there you have it. Not much difference between whatever bias is introduced from the baseline being loaded with stations and now being relatively sparse (and different stations).

I ran some other queries by hand and came up with some amusing “factoids”:

There are 7280 total stations in the inventory file.

There are 2545 total stations in the 2015 last year – current stations.

There are thus 4735 stations in the inventory that are NOT current
but used in fabricating artificial “data”.

However, an SQL query comparing GIStemp baseline to “now” gives 4446 stations while a similar one for Hadley gives 4285. So there’s some differences in the reports. Perhaps there are early stations that died off before the baseline.

In any case, there are only 4446-4285 = 161 dots difference between those two graphs. Good luck spotting them all -)

Subscribe to feed


About E.M.Smith

A technical managerial sort interested in things from Stonehenge to computer science. My present "hot buttons' are the mythology of Climate Change and ancient metrology; but things change...
This entry was posted in Global Warming General, NCDC - GHCN Issues, Tech Bits and tagged , , , , . Bookmark the permalink.

4 Responses to Hadley Baseline Thermometers Vs Now – GHCN v3.3

  1. ossqss says:

    Somewhat supplimental from some old links. I think Joe D’Aleo did a good write up on station counts too, but I can’t remember where I filed the article.


  2. Larry Ledwick says:

    Some interesting posts by Ned Nikolov on Twitter:

    Link to his paper:

    Click to access New-Insights-on-the-Physical-Nature-of-the-Atmospheric-Greenhouse-Effect-Deduced-from-an-Empirical-Planetary-Temperature-Model.pdf

    Old news to most of us but handy place to grab some references.

  3. gallopingcamel says:

    I agree with Ned when he says that “Pressure Rules” and gas composition does not matter but there are more compelling reasons for rejecting the “Green New Deal”.

    Our food is produced by less than 3% of the population thanks to agricultural machinery that runs on fossil fuels. Absent fossil fuels it will take at least 75% of our population to produce the same amount of food. If you solve that problem, how are you going to get that food into the cities where most of us live without fossil fuels? Without fossil fuels we will all have to move to where the food is or die. No more cities.

    In the process of re-arranging our economy most of us will die and we will deserve to die if we vote for the “Green New Deal”.

    Bernie Sanders, AOC and many more are pushing “Socialism” even though they can’t cite a single example of it working. On the other hand Hitler’s socialism killed millions of people and Stalin’s socialism killed millions of people.

    Today socialism survives in North Korea’s Juche system (aka Stalinism), in Cuba and in Venezuela. While the people of the two Koreas have the same language, traditions and work ethic the average income in the south is 16 times greater than in the north. In the north they have socialism and in the south they have capitalism.

    If you like socialism please move to North Korea or Venezuela and leave the rest of us wallowing in the prosperity generated via capitalism.

  4. Pingback: GHCN v3.3 vs v4 – Top Level Entry Point | Musings from the Chiefio

Comments are closed.